TOPIC: "DIFFERENTIAL EQUATIONS"

1. Determine the order and the degree of the differential equation .
$$\frac{d^2y}{dx^2} = \sqrt[3]{1 - \left(\frac{dy}{dx}\right)^4}$$

Page | 1

- 2. Find the order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt[3]{1 + \frac{dy}{dx}}$
- 3. State the order and degree of the differential equation $dy + \sqrt{1 + \frac{d^3y}{dx^3}} dx = 0$
- 4. Order and degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^3\right]^{\frac{7}{3}} = 7\frac{d^2y}{dx^2}$ are respectively
 - (a) 2.3
- (b) 3.2
- (c). 7.2
- (d). 3.7
- 5. Verify that $y = Ae^2 + Be^{-2a}$ is a solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 0$
- 6. From the differential equation by eliminating the arbitrary constants A and B from the relation $y = A \cos(\log x) + B \sin(\log x)$.
- 7. Find the differential equation of family of parabolas with vertex at (h 0) and the principal axis along the X-axis.
- 8. Verify $y \sec x = \tan x + c is$ a solution of $\frac{dy}{dx} + y \tan x = \sec x$.
- 9. From the differential equation by eliminating the arbitrary constant from the equation $y=c^2+\frac{c}{x}$.
- 10. From the differential equation by eliminating the arbitrary constant 'a" from the relation $(x-a)^2+y^2=1$.
- 11. From the differential equation by eliminating the arbitrary constants a and b from the relation $v = ae^{2x} + be^{-2x}$.
- 12. From the differential equation by eliminating the arbitrary constants from the equation $y = a \cos(\log x) + b \sin(\log x)$.

14. Solve the differential equation
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$

15. Solve the differential equation
$$\frac{dy}{dx} = (9x + y + 2)^2$$
,

16. Find the particular solution of the differential equation ,
$$y(1 + \log x) \frac{dx}{dy} - x \log x = 0$$
, When x=e and $y = e^2$

17. Solve the differential equation
$$y - x \frac{dy}{dx} = 0$$

18. Solve the differential equation
$$\cos^2 x \frac{dy}{dx} + y = \tan x$$
.

19. Solve the following differential equation
$$x \, dy \, y \, (1-y) \, dx$$
 also find the particular solution if y=2 when x = -4

20. Solve:
$$\frac{dy}{dx} = \cos(x+y) .$$

21. Solve the differential equation
$$\frac{dy}{dx} = e^{x+y} + x^2 e^y$$
.

22. Show that
$$y = \cos(x+5)$$
 is a solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$.

23. Solve the differential equation
$$y \frac{dy}{dx} = \frac{x}{e^2}$$

24. Solve the differential equation
$$x dy + 2y dx = 0$$
 when $x = 2 \& y = 1$.

25. Solve the differential equation
$$\cos^2 y \, dx - \csc x \, dy = 0$$

26. Find the particular solution of the differential equation
$$(e^y+1)\cos x\ dx + e^y\sin x\ dy = 0$$
, When $x = \frac{\pi}{4}$, $y = 0$.

27. Solve :
$$\frac{dy}{dx} = \frac{x+y}{x-y}$$

28. Solve :
$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$

Page | 3

29. Solve :
$$(1+e^{\frac{x}{y}})dx + e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy = 0.$$

- 30. Solve : $\sin x \frac{dy}{dx} y \log y$ also find the particular solution when $x = \frac{\pi}{2}$, y = 1.
- 31. Solve the differential equation $(x+y)^2 \frac{dy}{dx} = a^2$.

32. Solve:
$$\left(y + x \frac{dy}{dx}\right) \sin(xy) = \cos x$$
.

- 33. Solve the differential equation $x^2 \frac{dy}{dx} = x^2 + xy + y^2$
- 34. Solve the differential equation $(1+y^2) \tan^{-1}x dx + 2y(1+x^2) dy = 0$.
- 35. Solve the differential equation $y x \frac{dy}{dx} = 0$.
- 36. Solve the differential equation $(x+y)\frac{dy}{dx} = y$
- 37. Solve the differential equation $e^x \tan^2 y dx + (e^x 1) \sec^2 y dy = 0$
- 38.. Solve the differential equation. $\frac{dy}{dx} = \frac{y + \sqrt{x^2 y^2}}{x}$.
- 39. Verify that $y = ae^{-bx}$ is a solution of $\frac{d^2y}{dx^2} = \frac{1}{y} \left(\frac{dy}{dx}\right)^2$
- 40. Solve the differential equation $\frac{dy}{dx^2} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$.
- 41. Solve the differential equation $\frac{dy}{dx} = (4x + 3y 1)^2$.

42. Find the particular solution of the differential equation $\sec^2 y \tan x \, dy + \sec^2 x \tan y \, dx = 0$ when $x = y = \frac{\pi}{4}$.

Page | 4

- 43. The slop of the tangent to the curve at any point is equal to y + 2x. find the equation of the curve passing through the Origin.
- 44. The growth of a population is proportional to the number present . if the population of a colony doubles in 50 years in how many years will the population become triple?
